On intersections of Cantor sets: Hausdorff measure
نویسندگان
چکیده
منابع مشابه
On Intersections of Cantor Sets: Hausdorff Measure
We establish formulas for bounds on the Haudorff measure of the intersection of certain Cantor sets with their translates. As a consequence we obtain a formula for the Hausdorff dimensions of these intersections.
متن کاملHAUSDORFF MEASURE OF p-CANTOR SETS
In this paper we analyze Cantor type sets constructed by the removal of open intervals whose lengths are the terms of the p-sequence, {k−p}∞k=1. We prove that these Cantor sets are s-sets, by providing sharp estimates of their Hausdorff measure and dimension. Sets of similar structure arise when studying the set of extremal points of the boundaries of the so-called random stable zonotopes.
متن کاملON THE HAUSDORFF h-MEASURE OF CANTOR SETS
We estimate the Hausdorff measure and dimension of Cantor sets in terms of a sequence given by the lengths of the bounded complementary intervals. The results provide the relation between the decay rate of this sequence and the dimension of the associated Cantor set. It is well-known that not every Cantor set on the line is an s-set for some 0 ≤ s ≤ 1. However, if the sequence associated to the...
متن کاملHausdorff Dimension and Hausdorff Measure for Non-integer based Cantor-type Sets
We consider digits-deleted sets or Cantor-type sets with β-expansions. We calculate the Hausdorff dimension d of these sets and show that d is continuous with respect to β. The d-dimentional Hausdorff measure of these sets is finite and positive.
متن کاملRandom Intersections of Thick Cantor Sets
Let C1, C2 be Cantor sets embedded in the real line, and let τ1, τ2 be their respective thicknesses. If τ1τ2 > 1, then it is well known that the difference set C1 − C2 is a disjoint union of closed intervals. B. Williams showed that for some t ∈ int(C1−C2), it may be that C1∩ (C2 + t) is as small as a single point. However, the author previously showed that generically, the other extreme is tru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2013
ISSN: 1232-9274
DOI: 10.7494/opmath.2013.33.3.575